Dawkins: Not One of Our Ancestors Was a Failure

Richard Dawkins’s theme is upbeat:

All organisms that have ever lived—every animal and plant, all bacteria and all fungi, every creeping thing, and all readers of this book—can look back at their ancestors and make the following proud claim: Not a single one of our ancestors died in infancy. They all reached adulthood, and every single one [allowing for the inclusion of such outliers as in vitro fertilization] was capable of finding at least one heterosexual partner and of successful copulation. Not a single one of our ancestors was felled by an enemy, or by a virus, or by a misjudged footstep on a cliff edge, before bringing at least one child into the world. Thousands of our ancestors’ contemporaries fail in all these respects, but not a single solitary one of our ancestors failed in any of them.…Since all organisms inherit all their genes from their ancestors, rather than from their ancestors’ unsuccessful contemporaries, all organisms tend to possess successful genes. They have what it takes to become ancestors—and that means to survive and reproduce…That is why birds are so good at flying, fish so good at swimming, monkeys so good at climbing, viruses so good at spreading. That is why we love life and love sex and love children. It is because we all, without a single exception, inherit all our genes from an unbroken line of successful ancestors. (River Out of Eden)

Many readers love this passage. Its any-organism’s view backwards along the unbroken line of forebears celebrates the successes and joys of being alive. And it explains this success not as the result of human uniqueness or a generous deity but as nature’ own selection process. The same pride and pleasure we take in hearing about a great-grandmother who struggled, travelled, settled, and raised a family, Dawkins extends to all ancestors of all species, without exception. Any reader who may have earlier viewed evolution as alien and godless might feel a little less resistance now.

But other readers may take exception to the passage for other reasons. Some of that inheritance from our successful ancestors, we wish we would be spared. Down Syndrome, Cystic Fibrosis, some cancers, and other diseases are inherited to a degree. So are mental illness and violent tendencies. For those suffering from such inheritances today, the genetic filter has not been effective enough.

And then there’s bad luck. Many organisms that were as well-endowed genetically as “successful” ancestors might also have left offspring had it not been for factors beyond their control. The twin of that pioneer grandmother may have died in battle, gone down with the ship, succumbed to an earthquake, or starved in a drought—childless.

Last but not least, many people today are able to have children but choose not to. They may remain, though, no less “successful” in every other sense of the word.

In the end, I think these exceptions, instead of weakening Dawkins’ point, strengthen it—as if each living organism could say with conviction, see, so many different pieces, not only the genes but the circumstances too, had to fall into place for me to be here. And they did.

 

 

 

Steven Pinker on Emotions and Genes

Steven Pinker’s How the Mind Works might well be subtitled “And the emotions too.” It’s one terrific book. It offers a barrage of insights and connections about humans and evolution that can feel intoxicating. It stirs up the nature-nurture controversy with a blender. It does not see you as you almost certainly see yourself. And it is often very funny.

Despite the book’s title, Pinker talks more about emotions than about the mind itself. He sees them working together. The mind, he says, is computational: it processes information. Much of this information comes from the body’s biological systems. Emotions are units, modules, that use this bodily information to take direct steps—fear, anger, hunger, lust, egotism, empathy—that will promote survival and reproduction.

Humans, Pinker writes, are not, as we often believe, divided into thoughts and feelings that work against each other.

The emotions are adaptations, well-engineered software modules that work in harmony with the intellect and are indispensable to the functioning of the whole mind. The problem with the emotions is not that they are untamed forces or vestiges of our animal past; it is that they were designed to propagate copies of the genes that built them rather than to promote happiness, wisdom, or moral values. We often call an act ‘emotional’ when it is harmful to the social group, damaging to the actor’s happiness in the long run, uncontrollable and impervious to persuasion, or a product of self-delusion. Sad to say, these outcomes are not malfunctions but precisely what we would expect from well-engineered emotions. (Kindle location 7688)

So the good news is that our seemingly perverse emotional moments do not mean that something is wrong with us. But the not-so-good news is that our emotional acts are more deeply engrained in us than our well-meaning searches for happiness, wisdom, and virtue.

So are we doomed by the genes that build these emotional responses, responses that often mean we get  carried away just when we want to stay cool and collected? Pinker addresses this issue often, here in a discussion of love:

The confusion comes from thinking of people’s genes as their true self, and the motives of their genes as their deepest, truest, unconscious motives. From there it’s easy to draw the cynical and incorrect moral that all love is hypocritical. That confuses the real motives of the person with the metaphorical motives of the genes. Genes are not puppetmasters; they acted as the recipe for making the brain and body and then got out of the way. (8342)

I like the recipe metaphor. As I take it, genes are like the list of the ingredients and the steps for making a cake, but the flavor and texture of the cake itself is quite different from that sheet of instructions.

A human

A human “cake” and his genetic “recipe”
(images.nationalgeographic.com)

But if the genes have built emotions to keep us alive, doesn’t that mean those emotions are quite inflexible? Yes and no. Our own emotional core might not change much in our life time, but in species-time, the story is different.

Might the software for the emotions be burned so deeply into the brain that organisms are condemned to feel as their remote ancestors did? The evidence says no; the emotions are easy to reprogram. Emotional repertoires vary wildly among animals depending on their species, sex, and age. Within the mammals we find the lion and lamb. Even within dogs (a single species) a few millennia of selective breeding have given us pit bulls and Saint Bernards. (7721)

Pinker, in conclusion, tells us about ourselves in ways we may have difficulty recognizing. Modules and systems fine-tuned to an ancient past may seem non-human and even anti-human. But it’s not so difficult to absorb how science depicts the machinery of our emotions at the same time that we are inquiring thoughtfully about the meanings of our lives. Or, to put it another way, we can come to understand our recipe while we ponder what it is like to be the cake.

For more on the man, the book, and the debate, here is a lively and helpful article.

Emergent Phenomena: More Than the Sum of the Parts

I’ve been seeing the word emergence more and more in the last few years. But apart from the obvious sense that something arises, the meaning of the term—and what the excitement is all about—haven’t  been clear to me.

So a helpful source that I will summarize here has been “The Sacred Emergence of Nature” by Ursula Goodenough and Terrence Deacon (2008). As the title suggests, the authors not only describe emergence but also discuss its place in the perspective of religious naturalists.

The adage that “the whole is more than the sum of the parts” conveys a rough idea of the principle of emergence. Emergence occurs when a combination of entities has characteristics that are unlike the characteristics of its components. The common example is water: it combines hydrogen and oxygen but is like neither of those gases.

Goodenough and Deacon emphasize that emergence is the counterpart of reductionism, the process of breaking entities down into their parts. Though it tells us much about what a substance is made of, reductionism tells us little about how the parts came together in the first place and how properties emerged. In short, as the authors put it, reductionism is running the movie backwards. Emergence, in contrast, runs the movie forwards to show atoms forming compounds which then form  structures, and even how life may have begun and developed.

(azquotes.com)

(azquotes.com)

Two gasses merge to form a very different molecule of water. When, in turn, two or more water molecules come together, they again display characteristics as a solid, liquid, or gas that the single water molecule doesn’t possess.

In the same way, a sequence of atoms, molecules and complex compounds, merging and emerging one from the other, may have created life. The pivotal moment, according to Goodenough and Deacon, occurred when the sequence happened to create over again one of the first chemicals in its chain. At that point a cycle was created, the basis of the self-sustaining quality that is characteristic of life. Energy (food) would be needed, along with an internal recipe for the proper sequence (DNA), and a living things could emerge.

Goodenough and Deacon emphasize, interestingly, that it is not this coded recipe, the genome, that is driving the system. “Selfish genes” are not in control. “Genomes are in fact the handmaidens of emergent properties, not the other way around…. The whole point of life is to generate emergent properties that, if successfully executed, have the additional feature of permitting transmission of genomes.” It is the organism and its emergent properties that must survive and reproduce if the genome is to make  it through to the next generation.

As organic entities increase in number and complexity, examples of emergence abound. Molecules merge to form proteins, proteins merge to carry out organic functions, functional parts converge to form organs, neural cells form brains, brains merge to create mass behavior, language, ideas, cities, the Web.

Finally, Goodenough and Deacon describe the place of emergence in the view of nature and biology as sacred. Selected sentences from this rich discussion will have to suffice here. The theme is that emergent properties, by virtue of their originality, lie at the heart of what is wondrous and transcendent throughout nature.

On our place in nature: The understanding that human-specific traits are emergent—something else popping through from all that has gone on before and continues to surround us—is fully consonant with what we now know about the course of natural history, and a deeply satisfying way to think about who we are….Evolutionary theory asks us to situate the human in the natural world, and this can generate cognitive dissonance given that our mental capacities would seem to place us ‘above’ the natural world and our cultures ‘above’ the natural order. The emergentist perspective allows us to see ourselves not as ‘above’ but rather as remarkably ‘something else.’

On the magical and transcendent: The emergentist perspective opens countless opportunities to encounter and celebrate the magical while remaining mindful of the fully natural basis of each encounter. There is a way in which the universe is re-enchanted each time one takes in its continuous coming into being, and there is a way in which our lives are re-enchanted each time we realize that we too are continually transcending ourselves.

On morality: One’s moral framework is not some instinct that just bubbles up. It is something that each of us constructs, amplifying and reconfiguring primate social emotions in the context of cultural stimuli and teachings.

I understand emergence better now and appreciate it more. But I’m wondering about the relationship between emergence and evolution. Both name foundational aspects of how new things and characteristics come to exist. But I’m not sure whether they are most effectively viewed as two processes or as different aspects of a single process. Can mutations, the genetic glitches that open opportunities for biological evolution, be viewed as stages in emergence? Or are they “components” in the emergent process of an exceptional kind?

Any thoughts about this question or other aspects of emergence will be welcome.