Jahren’s ‘Lab Girl’: The Dramatic Life of Plants

Much as people admire plants, it is difficult to relate to them. It takes a special focus to sympathize with a plant’s struggles, to identify with it, to understand its idiosyncrasies. We have an immense range of words and images for capturing our own inner experiences—fear, exhaustion, revulsion, joy, thirst and so forth—but a mere handful for even the most prominent stages of plant life—growing, blooming, wilting, and a few others. This distance isn’t surprising. Plants are different from us in basic ways. They are anchored to the ground, they don’t have faces, and they make their own food. We acknowledge them as members of the family of life, but they also seem alien.

blog.plos.org

The poverty of our understanding of plants contributes, I believe, to our uneasiness about the meaning of our lives. We’re prone to feeling that being alive is either an exclusively human pleasure or a lonely human struggle. It’s easy to lose touch with the reality that plants along with animals have been passing through the experiences of growing, struggling, fending off threats, and sometimes flourishing, for hundreds of millions of years and by the billions. We might feel more at home in our own skins if our imaginations could take in the  lives of plants a little more easily.

Hope Jahren helps us do so. Lab Girl, her memoir, traces her life through the rigors of becoming an established research scientist and her workaholic triumphs and disappointments in labs and in the field. The bristling autobiographical chapters alternate with brief essays about how plants function and survive. It’s these plant chapters that most caught my attention. Here are excerpts:

      No risk is more terrifying than that taken by the first root. A lucky root will eventually find water, but its first job is to anchor—to anchor an embryo and forever end its mobile phases, however passive that mobility was. Once the first root is extended, the plant will never again enjoy any hope (however feeble) of relocating to a place less cold, less, dry, less dangerous. Indeed, it will face frost, drought, and greedy jaws without any possibility of flight. ….The root grows down before the shoot grows up, and so there is no possibility for green tissue to make new food for several days or even weeks. Rooting exhausts the very last reserves of the seed.  The gamble is everything, and losing means death. The odds are more than a million to one against success.
But when it wins, it wins big. If a root finds what it needs, it bulks into a taproot—an anchor that can swell and split bedrock, and move gallons of water daily for years.  (52)

     A cactus doesn’t live in the desert because it likes the desert; it lives there because the desert hasn’t killed it yet. Any plant you find growing in the desert will grow a lot better if you take it out of the desert. The desert is like a lot of lousy neighborhoods: nobody living there can afford to move…. A desert botanist is a rare scientist indeed and eventually becomes inured to the misery of her subjects. Personally, I don’t have the stomach to deal with such suffering day in and day out.   (142)

     Here’s my personal request to you: if you have any private land at all, plant one tree on it this year. If you’re renting a place with a yard, plant a tree in it and see if your landlord notices. If he does, insist to him that it was always there….
Once your baby tree is in the ground, check it daily, because the first three years are critical. Remember that you are your tree’s only friend in a hostile world. If you do own the land that it is planted on, create a savings account and put five dollars in it every month, so that when your tree gets sick between ages twenty and thirty (and it will), you can have a tree doctor over to cure it, instead of just cutting it down….
At the end of this exercise, you’ll have a tree and it will have you. You can measure it monthly and chart your own growth curve. Every day, you can look at your tree, watch what it does, and try to see the world from its perspective. Stretch your imagination until it hurts: what is your tree trying to do? What does it wish for? What does it care about? Make a guess. Say it out loud.    (282)

It would be easy to characterize this writing as merely heavily personified and emotional. But I take these and other passages as capturing realities about plants that rarely come within our understanding, empathy, or language. Most people would be more likely to imagine what it is like to be on the moon than what it like to be the tree in the backyard that is bracing for winter. And if we think of our human emotions—such as terrified and enjoy— as reactions to situations and not just shifting moods, then a first root really is a terrifying gamble, plants really can be said to enjoy, to benefit from, their mobility as seeds that might find friendly ground, and they really do get exhausted when their physical necessities run short.

And then there’s “you’ll have a tree and it will have you.” Considering the world’s deteriorating environment, Jahren argues, if one tree can rely on you, that tree is well off. I would add that the benefit is mutual; we ourselves are better off if we can share and feel, even faintly, the life of any plant.

Stem Cells: How To Build and Maintain Bodies, Including Plants

Until recently, I didn’t know much about stem cells except that they produced other kinds of cells and that the medical research on them was controversial. In the context of the history of life, it turns out, their importance is as fundamental as you can get.

It took more than a billion years for the first cell with a nucleus to come together. Since then, the only reliable source for a new cell has been another cell. Every cell is an offspring. True for plants as well as animals.

An embryonic stem cell (Wikipedia)

An embryonic stem cell
(Wikipedia)

But while cells are specialized for one task or another, they are not always very good at dividing and reproducing. Muscle cells, blood cells, and nerve cells don’t reproduce at all. Other cells in the body divide only under some circumstances or only a limited number of times.

But reproduction is the stem cell’s specialty. When it divides, it produce another stem cell, ready for the next round, along with a muscle cell or blood cell or nerve cell or a cell of another organ. It looks the part for such flexibility—blob-like, unstructured, not committed until needed.

Stem cells are stationed throughout the body, small groups of them in each organ, like local hospitals on call to repair the sick and damaged. They are a profound piece of bodily engineering, a design for the long-term, like a futuristic car that carries little 3-D printers throughout the engine and chassis to create new parts and replace the old parts automatically.

In human embryos, in contrast to adults, stem cells literally build the body. When an embryo is only a few days old, its stem cells begin to form all—all—of the specialized cells needed in a body, some 200 of them.

In this root tip, the number 1 marks the relatively unstructured stem cells in the meristem. (Wikipedia)

In this root tip, the number 1 marks the relatively unstructured stem cells in the meristem.
(Wikipedia)

Plants have stem cells too. Located near the tips of the roots and stems in a layer called the meristem, plant stem cells divide into both specialized cells for the plant and additional stem cells. Stem cells are, in other words, the place where a plant grows.

One of the wonders of any living thing is the sheer variety of its parts, the inventory of its tubes, organs, fluids, surfaces, protrusions, electric circuits and rigid pieces. As we pause to appreciate this profusion, sing the praises of the smudgy cell that creates and repairs them all.

The Most Amazing Thing About Life

“The most impressive aspect of the living world is its diversity. No two individuals in sexually reproducing populations are the same, nor are any two populations, species, or higher taxa [categories of organisms]. Wherever one looks in nature, one finds uniqueness.” So wrote Ernst Mayr in This is Biology, published in 1997.

Grains of sand under an electron microscope (wikipedia)

Grains of sand 
(wikipedia)

This was, to an extent, a new idea to me. Clearly each species is different from the next. But I had not fully absorbed the notion that every single organism, if it reproduces in pairs, is different from every other in its species. Every individual grass plant, every tree, every insect, every ant is as different from the one next to it as two human beings are. Why? As Mayr explains, diversity ensures that some individuals will fit the environment; as the environment weeds out some versions, others will survive.

But what about the diversity in the non-biological, inanimate world? “Nature” includes not only living things but also rocks, water, air, light and other forces and materials. Aren’t they unique in their own ways? Snowflakes are famously singular. Clouds are constantly changing. So is the surface of the ocean. Air flows and spins. I’m pretty sure I’ve never seen two rocks that are identical. It’s a good bet that every asteroid, planet and star is different from the others in some ways. Looking out over the dessert, the ocean, or the skies, we certainly see diversity in shape, motion, color and light.

Diversity and fertility in grass (www.kvkcard.org)

(www.kvkcard.org)

Still, I think the diversity of living things does “impress” us, as Mayr wrote, in a distinct way. The variety of the organisms in a species is more individualistic, unique, than the motions, colors and contours of the elements around us. And it captures our attention partly because of the sheer power of fertility. New life is always thrusting itself in front of us—in a sister’s baby, in a new puppy, among the trees at the back of the backyard, in the horde of ants and bees and birds of spring. In Origin of Species, Darwin wrote, “There is no exception to the rule that every organic being naturally increases at so high a rate, that if not destroyed, the earth would soon be covered by the progeny of a single pair.”

Diversity is the music, but fertility is the amplifier. It’s the combination that gets our attention. And we are not remote observers. We are both notes in the music and members of the orchestra.